

ISSN No. (Print): 0975-1718 ISSN No. (Online): 2249-3247

A Note on Separation Theorem and Continuous Linear Functionals

Neha Phogat

Resource Person, Department of Mathematics, Maharshi Dayanand University, Rohtak (Haryana), India.

(Corresponding author: Neha Phogat) (Received 03 March, 2019 accepted 14 May, 2019) (Published by Research Trend, Website: www.researchtrend.net)

ABSTRACT: In this article, we obtain a depiction of continuous linear functionals on a fuzzy quasi-normed space, and indicate the firm of all continuous linear functional forms a convex cone. Finally, we establish a theorem of separation and Hahn-Banach for convex subsets.

Keywords: fuzzy quasi-normed space, continuous linear functional separation theorem

I. INTRODUCTION

Alegre and Romaguera [2] formulated problem using fuzzy quasi-norm, while [1] obtained the properties of the paratopological vector spaces that are quasimetrizable, locally bounded, quais-normable. In [4], they established some results in fuzzy quasi-normed spaces. The [3] was expanded upon by [4] by proving an extension theorem for continuous linear functionals on a fuzzy normed space.

This paper consists of four sections. Section 1 contains introduction. Section 2 consists of basic definitions and prepositions. In section 3, we discuss continuous linear functionals on a "fuzzy quasi-normed space". In section 4, we prove Hahn-Banach and separation theorems for convex subsets.

II. PRELIMINARIES

Definition 1 [8]: A binary operation $*: [0,1] \times [0,1] \rightarrow$ [0,1] is a continuous t-norm if it satisfies the following conditions: $\forall a, b, c, d \in [0,1]$,

- (1) a * b = b * a (commutavity);
- (a * b) * c = a * (b * c) (associativity); (2)
- (3) $a * b \le c * d$ whenever $a \le c$ and $b \le d$ (monotonicity);
- (4) a * 1 = a (boundary condition);
- (5) * is continuous on $[0,1] \times [0,1]$ (continuity).

Three paradigmatic examples of continuous t-norm are Λ_{i} and $*_{L}$ (the Lukasiewicz t-norm), which are defined by

 $a \wedge b = \min\{a, b\}$, $a \cdot b = ab$ and $*_L b = \max\{a + b\}$ b - 1,0, respectively.

Definition 2 [2]: A fuzzy quasi-norm on a real vector space X is a pair (N,*) such that * is a continuous t-norm and N is a fuzzy set $X \times [0, +\infty)$ satisfying the following conditions: for every, $y \in X$,

(FQN1) N(x, 0) = 0;

(FQN2) N(x,t) = N(-x,t) = 1 for all $> 0 \Leftrightarrow x = \theta$;

(FQN3) $N(\lambda x, t) = N(x, t/\lambda)$ for all > 0;

(FQN4) $N(x,t) * N(y,s) \le N(x+y,t+s)$ for all

(FQN5) $N(x, _): [0, +\infty] \rightarrow [0,1]$ is left continuous;

(FQN6) $\lim_{t\to\infty} N(x,t)=1$. Obviously, the function $N(x,_)$ is increasing for each $x \in X$.

By a fuzzy quasi-normed space, we mean a triple (X, N, *) such that X is a real vector space and (N, *) is a fuzzy quasi-norm on *X*.

If condition (FQN6) is omitted, we say that (N,*) is a weak fuzzy quasi-norm on X.

Each fuzzy quasi-norm (N,*) on X induces a T_0 topology τ_n on X which has a basen given by the family of open balls

 $\mathcal{B}(x) = \{B_n(x, r, t) : r \in (0, 1), t > 0\}$

at $x \in X$,

where,

 $B_n(x,r,t) = \{ y \in X : N(y-x,t) > 1-r \}.$

We denote cl_NA the closure of A and by int_NA the interior of A in the topological space (X, τ_n) .

A subset A of a real vector space X is

- Semi-balanced [7] provided that for each $x \in A$, (1) $rx \in A$ whenever $0 \le r \le 1$;
- absorbing provided that for each $x \in X$, there is $\lambda_o > 0$ such that $\lambda_o x \in A$.

Remark 2.1. Obviously, we have

- if A is semibalanced, then A is absorbing if and only if for each $x \in X$, there is $\lambda_0 > 0$ such that $\lambda x \in A$ whenever $0 < \lambda < \lambda_o$;
- if $\theta \in A$ and A is convex, then A is (2) semibalanced.

Proposition 2.1 [2]. Let(X, N, *) be a fuzzy quasinormed space and let $\mathcal{B}(\theta)$ the family of open balls with center in the origin θ . Then:

- (1) $B_N(\theta,r,t)$ is absorbing for all t>0 and $r\in$ (0,1).
- (2) $B_N(\theta, r, t)$ is semi-balanced for all t > 0 and $r \in (0,1)$.
- $\lambda B_N(\theta, r, t) = B_N(\theta, r, \lambda t)$ for every $\lambda >$ 0, t > 0 and $r \in (0,1)$.
- If $U \in \mathcal{B}(\theta)$, there is $V \in \mathcal{B}(\theta)$, such that V + $V \subseteq U$.
- (5) If $U, V \in \mathcal{B}(\theta)$, there is $W \in \mathcal{B}(\theta)$, such that $W \subseteq U \cap V$.

 $\forall x \in X, x + B_N(\theta, r, t) = B_N(x, r, t).$

Remark 2.2. If the continuous t-norm * is chosen as "\Lambda", then each element $\mathcal{B}(\theta)$ is convex.

Remark 2.3. By Proposition 2.1, the mappings: $(x, y) \rightarrow$ x + y and $(\lambda, x) \rightarrow \lambda x$ are continuous on $X \times X$ and $[0,\infty)\times X$, respectively, and the topology τ_n is translation invariant.

Proposition 2.2 ([2]). If (X, N, *) is a fuzzy quasinormed space, then $(X, \tau_n, *)$ is a quasi-metrizable paratopological vector space.

Proposition 2.3. Let $P = \{p_{\alpha} : p_{\alpha} \text{ is a function from } X \text{ to } \}$ $[0, \infty), \alpha \in (0,1)$ } be a family of star quasi-seminorms. For each $x \in X$, let

$$U_p(x) = \{ U(x: \alpha_1, \alpha_2, ..., \alpha_n; \varepsilon) : \varepsilon > 0; \alpha_1, \alpha_2, ..., \alpha_n \in (0,1), n \in \mathbb{N} \},$$

where

$$\begin{split} U(x:\alpha_1,\alpha_2,\dots,\alpha_n;\varepsilon) &= \big\{ y \in X \colon p_{\alpha_i}(y-x) < \varepsilon, \alpha_i \\ &\in (0,1), i = 1,2,\dots,n \big\} \\ &= \bigcap_{i=1}^n \big\{ y \in X \colon p_{\alpha_i}(y-x) < \varepsilon, \alpha_i \in (0,1) \big\} \\ &= \big\{ y \in X \colon p_{\max\{\alpha_i:1 \le i \le n\}}(y-x) < \varepsilon \end{split}$$

Then, $U_p(x)$ is a basis of neighbourhoods of x.

III. CONTINUOUS LINEAR FUNCTIONALS ON A "FUZZY QUASI-NORMED SPACE

Consider the quasi-norm $w(x_1) = \max\{x_1, 0\}$ on the real numbers \mathbb{R} . The topology $\tau(w)$ generated by w is called the upper topology of \mathbb{R} . A basis of open $\tau(w)$ neighbourhoods of a point $x_1 \in \mathbb{R}$ is formed of the intervals $(-\infty, x_1 + \varepsilon), \varepsilon > 0$.

The quasi-dual $(X_1, N, *)^{\#}$ of a fuzzy quasi-normed space $(X_1, N, *)$ is formed by all continuous linear functionals from (X_1, τ_N) to $(\mathbb{R}, \tau(w))$. In the sequel, $(X_1, N, *)^\#$ will be simply denoted by $X_1^{\#}$.

Theorem 3.1 Let $(X_1, N, *)$ be a fuzzy quasi-normed space. $f \in X_1^{\#}$ iff there are $\alpha \in (0,1)$ and $M_1 >$ $0 \text{ s.t. } h(x_1) \leq M_1 ||x_1||_{\alpha} \text{ for all } x_1 \in X_1.$

Corollary 3.1 Let $(X_1, N, *)$ be a fuzzy quasi-normed space. $(X_1, N, *)^{\#}$ is a convex cone.

Now, we shall equip $(X_1, N, *)^{\#}$ with a weal fuzzy quasi-

Definition 3.1 Let X_1 be a linear space and let $q_1: X_1 \rightarrow$ $[0,\infty]$ be an extended function $\forall i \in I$. If $[q_1:i \in I]$ fulfils the conditions of star quasi-seminorms, then it is called a family of star extended quasi-seminorms.

Theorem 3.2 Let $Q = \{||.||_{\alpha} : \alpha \in (0,1)\}$ be an increasing family of separating star extended quasiseminorms on real linear space X_1 , and let $||.||_o$ be given by $||x||_o = 0 \ \forall x_1 \in X_1$. The function $N_q(x_1, t): X_1 \times$

$$[0, \infty] \to [0,1] \text{ is given by}$$

$$N_q(x_1, t) = \begin{cases} 0, t = 0 \\ \sup \{\alpha \in (0,1): ||x_1||_{\alpha} < t, t > 0 \end{cases}$$

Then $(N_q,*)$ is a weak fuzzy quasi-norm on X_1 . (FQN1) is obvious.

(FQN2) If $N_q(x_1, t) = N_q(-x_1, t) \,\forall \, t > 0$ $||x_1||_{\alpha} < t$ and $||-x_1||_{\alpha} < t \ \forall \ \alpha \in (0,1)$ from (3.1). Therefore, $||x_1||_{\alpha} = ||-x_1||_{\alpha} = 0 \ \forall \ \alpha \in (0,1)$. Since Q is separating, $x_1 = \theta$. Conversely, if $x_1 = \theta$, then it implies that $||x_1||_{\alpha} = ||-x_1||_{\alpha} = 0 \ \forall \ t > 0$. By (3.1), $N_q(x_1, t) = N_q(-x_1, t) = 1$.

(FQN3) Let d > 0. From (* QN1), we have

$$N_q(dx_1, t) = \sup \{ \alpha \in (0,1) : ||dx_1||_{\alpha} < t \}$$

$$= \sup \left\{ \alpha \in (0,1): \left| |x_1| \right|_{\alpha} < \frac{t}{c} \right\}$$

(FQN4) Let $x_1, y_1 \in X_1$ and s, t > 0 and let $N_a(x_1, t) =$ β , $N_q(y_1s) = \gamma$. W.L.O.G., we assume that 0 < $\min\{\beta, \gamma\}.$

For any $0 < \epsilon < \min\{\beta, \gamma\}$, there exist $\alpha', \alpha'' \in$ (0,1) s. t. $\alpha' > \beta - \epsilon$, $\alpha'' > \gamma - \epsilon$, $||x_1||_{\alpha'} < t$ and $||y_1||_{\alpha''} < s.$

Thus, $||x_1||_{\beta=\epsilon} < t$ and $||y_1||_{\gamma=\epsilon} < s$. And hence, $\left| |x_1 + y_1| \right|_{(\beta - \epsilon) * (\gamma - \epsilon)} \le \left| |x_1| \right|_{\beta - \epsilon} + \left| |y_1| \right|_{\gamma - \epsilon} < t + s.$ By (3.1), $N_q(x_1 + y_1, t + s) \ge (\beta - \epsilon) * (\gamma - \epsilon)$. (FQN5) Obviously, $N_q(\theta, _) = 1$, and hence, $N_q(\theta, _)$ is continuous. Now, take $x_o \in X/\{\theta\}$ and $t_o > 0$.

If $N_q(x_1, t_0) = 0$, then $N_q(x_1, t) = N_q(x_1, t_0) =$ $0 \forall t < t_o$.

So, $N_q(x_1, _-)$ is left continuous at t_o . Take $\epsilon > 0$, from (3.1), $\exists \alpha_o \in (0,1) \ s.t. \ ||x_1||_{\alpha_o} < t_o \text{ and } N_q(x_o,t) \epsilon < \alpha_o$. So, we have $N_q(x,t) \ge \alpha_o \ \forall \ t \ \text{with} \ ||x_1||_{\alpha} < \alpha_o$ $t < t_o$. Hence, $N_q(x, t_o) - N_q(x_1, t) \le N_q(x_1, t_o) - N_q(x_1, t_o)$ $\alpha_o < \epsilon$.

Therefore, $N_q(x_1, _)$ is left continuous at t_o . And

$$||h||_{\alpha}^{\#} = \sup \{h(x_1): ||x_1||_{1-\alpha} \le 1\} \, \forall \, \alpha \in (0,1).$$
(3.2)

Theorem 3.3 Let $(X_1, N, *)$ be a fuzzy quasi-normed space, $h \in X^{\#}$, $\alpha \in (0,1)$.

If $h \neq 0$, then $||h||_{\alpha}^{\#} > 0$.

2.
$$||h||_{\alpha}^{\#} = \sup \{h(x_1): ||x_1||_{1-\alpha} < 1\}.$$

3.
$$||h||_{\alpha}^{\#} = \sup\{h(x_1): N(x_1, 1) \ge 1 - \alpha\}.$$

If $N(x_1, _)$ is increasing strictly, then $||h||_{\alpha}^{\#} =$ $\sup\{h(x_1): N(x_1, 1) \ge 1 - \alpha\}$

Theorem 3.4 Let $(X_1, N, *)$ be a fuzzy quasi-normed space. Then

- $\{||.||_{\alpha}^{\pi}: \alpha \in (0,1)\}$ is a family of separating star extended quasi-seminorms on $X_1^{\#}$;
- $\{\left|\left|.\right|\right|_{\alpha}^{\#}: \alpha \in (0,1)\}$ is increasing with respect to (2)

Remark 3.1 $||f||_{\alpha}^{\#}$ can be infinity even in symmetrical

The following theorem is obvious from theorem 3.2 and theorem 3.4.

Theorem 3.5 Let $(X_1, N, *)$ be a fuzzy quasi-normed

space. For each
$$h \in X_1^\#$$
, let $N_{x_1}^\#(h,t) = \begin{cases} 0, t = 0 \\ \sup \{\alpha \in [0,1]: ||h||_{\alpha}^\# < t \} \end{cases}$ (3.3)

Then, $(N_{x_1}^{\#},*)$ is a weak fuzzy quasi-norm on $X_1^{\#}$.

HAHN-BANACH AND **SEPARATION** THEOREMS FOR CONVEX SETS

Lemma 4.1 Let X_1 be a linear space and q be a sublinear functional on X_1 . If X_o is a subspace of X_1 and h_o is a linear functional by q on X_o , then \exists a h dominated by qon X_1 s.t. $\frac{h}{X_0} = h_o$.

Theorem 4.1 Let $(X_1, N, *)$ be a fuzzy quasi-normed space and let h_o be a continuous linear functional on a subspace $(X_o, N/X_o, *)$ of $(X_1, N, *)$. Then, $\exists \delta \in [0,1]$ for which the following two conditions are satisfied:

(1) for
$$\text{all}\alpha \in (0, \delta)$$
, there is $h_{\alpha} \in (X_1, N, *)^{\#}$ s.t. $\frac{h_{\alpha}}{X_o} = h_o$ and $\left| |h_{\alpha}| \right|_{\alpha}^{\#} = \left| |h_o| \right|_{\alpha, X_o}^{\#}$, where

$$\begin{aligned} & ||h_o||_{\alpha, X_o}^{\#} = \sup \left\{ h_o(x_1) : x_1 \in X_o, ||x_1||_{1-\alpha} \le 1 \right\}; \\ & N_{X_o}^{\#}(h_o, t) = \sup \{ N^{\#}(h_\alpha, t) : \alpha \in (0, \delta) \} \, \forall \, t > 0 \end{aligned}$$

(2)
$$N_{X_o}^{\#}(h_o, t) = \sup\{N^{\#}(h_\alpha, t) : \alpha \in (0, \delta)\} \forall t > 0.$$

Proof:

$$\delta = \sup \left\{ \alpha \in (0,1) : \left| |h_o| \right|_{\alpha, X_o}^{\#} < \infty \right\}$$

$$(4.1)$$

Since $h_o \in (X_o, N/X_o, *)^\#$, we get $\delta \in (0,1)$.

(1) For any
$$\alpha \in (0, \delta)$$
, (4.1) implies that $||h_o||_{\alpha, X_o}^{\#} < \infty$.

Define a functional q_{α} on X_1 as:

$$q_{\alpha}(x) = ||h_o||_{\alpha, X_o}^{\#} ||x_1||_{1-\alpha}, \forall x_1 \in X_1.$$

 $\left| \left| . \right| \right|_{1-lpha}$ is a quasi-seminorm implying that q_{lpha} is a sublinear functional on X.

Let
$$x_1 \in X_0$$
. If $||x_1||_{1-\alpha} > 0$, then $h_o(\frac{x_1}{||x_1||_{1-\alpha}}) \le$

$$||h_o||_{\alpha}^{\#}$$
 so that $h_o(x_1) \le q_\alpha(x)$

$$\begin{aligned} \left| |h_o| \right|_{\alpha, X_o}^\# &\text{ so that } h_o(x_1) \leq q_\alpha(x). \\ &\text{If } \left| |x_1| \right|_{1-\alpha} = 0, & \text{ then } \left| |\varsigma x_1| \right|_{1-\alpha} = \varsigma \left| |x_1| \right|_{1-\alpha} = 0 \; \forall \; \varsigma > 0. \end{aligned}$$

By definition of $\left| |h_o| \right|_{\alpha, X_o}^{\#}$, we get

$$\left| |h_o| \right|_{\alpha, X_o}^{\#} > h_o(\varsigma x_1) \text{ i.e. } h_o(x_1) \le \left| |h_o| \right|_{\alpha, X_o}^{\#} / \varsigma$$

 $\Rightarrow h_o(x_1) \le 0 = q_\alpha(x).$

Thus, h_o is dominated by q_α on X_o .

By lemma 4.1, there is a linear functional h_{α} on X, s.t.

 $\frac{h_{\alpha}}{X_o} = h_o$ and

$$h_{\alpha}(x_1) \le \left| |h_o| \right|_{\alpha, X_o}^{\#} \left| |x_1| \right|_{1-\alpha}, \forall x_1 \in X_1.$$

On the other hand, by $h_{\alpha}(x) \le \left| |h_o| \right|_{\alpha, X_o}^{\#} \left| |x_1| \right|_{1-\alpha}$, we know that $h_{\alpha}(x_1) \leq ||h_o||_{\alpha}^{\#}$

whenever $||x_1||_{1-\alpha} \le 1$, which means that

$$||h_{\alpha}||_{\alpha}^{\#} = \sup\{h_{\alpha}(x_{1}): x_{1} \in X_{o}, ||x_{1}||_{1-\alpha} \le 1\} \le ||h_{o}||_{\alpha, X_{o}}^{\#}.$$

Thus, $\left| |h_{\alpha}| \right|_{\alpha}^{\#} = \left| |h_{o}| \right|_{\alpha, X_{o}}^{\#}$.

For any $\alpha \in (0, \delta)$ and $\gamma \in [0, 1)$, since $\frac{h_{\alpha}}{\gamma} =$ h_o , it is obvious that

$$\left|\left|h_{\alpha}\right|\right|_{\gamma}^{\#} = \left|\left|h_{o}\right|\right|_{\gamma, X_{o}}^{\#}$$
, it follows

$$N_{X_o}^{\#}(h_o, t) = \sup \{ \gamma \in [0, 1): ||h_o||_{\gamma, X_o}^{\#} < t \} \ge \sup \{ \gamma \in [0, 1): ||h_{\alpha}||_{\gamma}^{\#} < t \} = N^{\#}(h_{\alpha}, t).$$

Lemma 4.2 Let A be a semi-balanced and absorbing subset of a paratopological linear space (X_1, τ) . μ_A is the minkowski functional of the set A, i.e.

$$\mu_A(x_1) = \inf\{\varsigma > 0 : x_1 \in \varsigma A\} \ \forall \ x_1 \in X_1.$$

Put =
$$\{x_1: \mu_A(x_1) < 1\}$$
; $C = \{x_1: \mu_B(x_1) \le 1\}$

(1)
$$\mu_A(\varsigma x_1) = \varsigma \mu_A(x_1) \ \forall \ \varsigma > 0, \forall \ x_1 \in X_1.$$

If A is convex, then $\mu_A(x+y) \le \mu_A(x) +$ (2) $\mu_A(y), \forall \; x_1, y_1 \in X_1.$

- $int_{\tau}A \subseteq B \subseteq A \subseteq C \subseteq Cl_{\tau}A$ (3)
- (4) The following are equivalent:
- $\mu_A: (X_1, \tau) \to (R, \tau(w))$ is continuous at θ , (i)
- (ii) $int_{\tau}A = B$,
- $\theta \in int_{\tau}A$. (iii)
- (5) If A is convex, then $\mu_A: (X_1, \tau) \to (R, \tau(w))$ is continuous at θ iff μ_A is continuous at X_1 .

Theorem 4.2 Let $(X_1, N, *)$ be a fuzzy quasi-normed space and A, B two disjoint convex subsets of X with A open. Then, $\exists \ a\delta \in (0,1]$ s.t for each $\alpha \in (0,\delta)$, there is $h_{\alpha} \in X^{\#}$ s.t.

$$h_{\alpha}(x_1) < h_{\alpha}(y_1) \ \forall \ x_1 \in A, y_1 \in B.$$

Proof:

Let $\vartheta \in A$, $\eta \in B$ and let $\xi = \eta - \vartheta$. Since A is open and topology τ_N is translation invariant, $C = A - B + \xi$ is open. It is obvious that C is convex and $\theta \in C$.

By lemma 4.2, μ_C of C is sublinear, $\tau(w)$ -continuous.

Since, $A \cap B = \phi$, then $\xi \notin C.\mu_C(\xi) \ge 1$. Let X_o be one-dimensional subspace generated by ξ . A linear functional $h_o: X_o \to R$ by $h_o(t\xi) = t \ \forall \ t \in \mathbb{R}$.

Since $h_o(t\xi) = t \le t\mu_c(\xi) = \mu_c(t\xi)$ for $t \ge 0$, and $h_o(t\xi) = t < 0 \le \mu_C(t\xi)$ for t < 0, it follows that

 $h_o(x_1) \le \mu_C(x_1), \forall x_1 \in X_o.$

 $\Rightarrow h_o$ is $\tau(w)$ -continuous.

By theorem 4.1, $\exists \delta \in (0,]$ s.t. $\alpha \in (0, \delta)$, there is $h_{\alpha} \in$

For each $x_1 \in A$ and $y_1 \in B$, since $h(\xi) = 1$, x - y + $\xi \in C$ and C is open,

$$\Rightarrow h\phi_{\alpha}(x_{1}) - h\phi_{\alpha}(y_{1}) + 1 = \phi h_{\alpha}(x_{1} - y_{1} + \xi)$$

$$\leq \mu_{C}(x_{1} - y_{1} + \xi) < 1,$$

$$\Rightarrow h_{\alpha}(x_{1}) < h_{\alpha}(y_{1}).$$

$$\Rightarrow h_{\alpha}(x_1) < h_{\alpha}(y_1).$$

REFERENCES

- [1]. Alegre, C., & Romaguera, S. (2003). On paratopological vector spaces. *Acta Mathematica Hungarica*, **101**(3), 237-261.
- [2]. Alegre, C., & Romaguera, S. (2010). Characterizations of metrizable topological vector spaces and their asymmetric generalizations in terms of fuzzy (quasi-) norms. *Fuzzy Sets and Systems*, **161**(16), 2181-2192.
- [3]. Alegre, C., & Romaguera, S. (2014). The Hahn-Banach extension theorem for fuzzy normed spaces revisited. In *Abstract and Applied Analysis* (Vol. 2014). Hindawi.
- [4]. Alegre, C., & Romaguera, S. (2016). On the uniform boundedness theorem in fuzzy quasi-normed spaces. *Fuzzy Sets and Systems*, **282**, 143-153.
- [5]. Bag, T., & Samanta, S. K. (2003). Finite dimensional fuzzy normed linear spaces. *Journal of Fuzzy Mathematics*, **11**(3), 687-706.
- [6]. Cobzas, S. (2012). Functional analysis in asymmetric normed spaces. Springer Science & Business Media.
- [7]. George, A., & Veeramani, P. (1997). On some results of analysis for fuzzy metric spaces. *Fuzzy sets and systems*, **90**(3), 365-368.
- [8]. Schweizer, B., & Sklar, A. (1960). Statistical metric spaces. *Pacific J. Math*, **10**(1), 313-334.