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ABSTRACT: In this article, we obtain a depiction of continuous linear functionals on a fuzzy quasi-normed
space, and indicate the firm of all continuous linear functional forms a convex cone. Finally, we establish a
theorem of separation and Hahn-Banach for convex subsets.
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1. INTRODUCTION

Alegre and Romaguera [2] formulated problem using
fuzzy quasi-norm, while [1] obtained the properties of
the paratopological vector spaces that are quasi-
metrizable, locally bounded, quais-normable. In [4], they
established some results in fuzzy quasi-normed spaces.
The [3] was expanded upon by [4] by proving an
extension theorem for continuous linear functionals on a
fuzzy normed space.

This paper consists of four sections. Section 1 contains
introduction. Section 2 consists of basic definitions and
prepositions. In section 3, we discuss continuous linear
functionals on a “fuzzy quasi-normed space”. In section
4, we prove Hahn-Banach and separation theorems for
convex subsets.

I1. PRELIMINARIES

Definition 1 [8]: A binary operation *: [0,1] X [0,1] —
[0,1] is a continuous t-norm if it satisfies the following
conditions: Va, b, c,d € [0,1],

1) a * b = b * a (commutavity);

(2) (a * b) xc = a = (b * c¢) (associativity);

3 axb<c*d whenever a<c and b<d
(monotonicity);

(@) a * 1 = a (boundary condition);

(5) * is continuous on [0,1] x [0,1] (continuity).
Three paradigmatic examples of continuous t-norm are
A, and x; (the Lukasiewicz t-norm), which are defined
by

aAb =min{a, b} ,a-b=ab and
b — 1,0}, respectively.

Definition 2 [2]: A fuzzy quasi-norm on a real vector
space X is a pair (N,*) such that * is a continuous t-norm
and N isafuzzy set X x [0, +0) satisfying the following
conditions: for every ,y € X ,

(FON1) N(x,0) =0;

(FOQN2) N(x,t) = N(—x,t) =1forall >0 = x =0 ;
(FQN3) N(Ax,t) = N(x,t/A) forall > 0 ;

(FON4) N(x,t)*N(y,s) < N(x+y,t+s) for all
,s>0;

(FON5) N(x,_): [0, 4] — [0,1] is left continuous;

*; b = max{a +

(FQNG) lim N(x,t) = 1.

Obviously, the function N(x,_) is increasing for each
x € X.

By a fuzzy quasi-normed space, we mean a triple
(X, N,*) such that X is a real vector space and (N,*) is a
fuzzy quasi-norm on X.

If condition (FQNG) is omitted, we say that (N,*) is a
weak fuzzy quasi-norm on X.

Each fuzzy quasi-norm (N,*) on X induces a T, topology
T,, on X which has a basen given by the family of open
balls

B(x) = {B,(x,7,t):r € (0,1),t > 0}

atx € X,

where,

B,(x,r,t) ={yeX:N(y —x,t) >1—r}.

We denote clyA the closure of A and by intyA the
interior of A in the topological space (X, 7,,).

A subset A of a real vector space X is

(8] Semi-balanced [7] provided that for each x € A4,
rx € Awhenever 0 <r < 1;

2) absorbing provided that for each x € X, there is
Ao > 0 such that 1,x € A.

Remark 2.1. Obviously, we have

1) if A is semibalanced, then A is absorbing if and
only if for each x € X, there is 4, > 0 such that Ax € A
whenever 0 < A < 4, ;

2 if 6eA and A
semibalanced.

Proposition 2.1 [2]. Let(X,N,x) be a fuzzy quasi-
normed space and let B(8) the family of open balls with
center in the origin 8. Then:

is convex, then A is

@) By (6,71,t) is absorbing for all t >0 and r €
(0,1).

) By (6,1,t) is semi-balanced for all t > 0 and
r € (0,1).

?3) ABy(6,71,t) = By(0,1,At) for every A>
0,t > 0andr € (0,1).

4 IfU € B(0), there is V € B(H), such that V +
Vcu.

(5) IfU,V € B(0), there is W € B(0), such that
wecunV.
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(6) Vx € X,x + By(0,r,t) = By(x,1,t).
Remark 2.2. If the continuous t-norm * is chosen as “A”,
then each element B(0) is convex.
Remark 2.3. By Proposition 2.1, the mappings: (x,y) —
x+y and (4,x) = Ax are continuous on X X X and
[0,00) X X , respectively, and the topology t, is
translation invariant.
Proposition 2.2 ([2]). If (X,N,*) is a fuzzy quasi-
normed space, then (X,t,,*) is a quasi-metrizable
paratopological vector space.
Proposition 2.3. Let P = {p,: p, is a function from X to
[0,00), @ € (0,1)} be a family of star quasi-seminorms.
For each x € X, let
Up(x) ={U(x: @y, az, ..., ap; €):6 > 0; 04,0z, ..., 0y
€ (0,1),n € N},
where
Ulx:aq, @y, e, @y; €)
={y e Xipy,(y — %) < &, o
€(01),i=12,..,n}

= yEXipy,(y —x) <ea; €(0,1)}

i=1
={y € X: Pmax {ai:lsisn}(y -x)<e¢
Then, U, (x) is a basis of neighbourhoods of x.

I11. CONTINUOUS LINEAR FUNCTIONALS ON
A “FUZZY QUASI-NORMED SPACE

Consider the quasi-norm w(x;) = max {x,,0} on the
real numbers R. The topology t(w) generated by w is
called the upper topology of R. A basis of open t(w)-
neighbourhoods of a point x; € R is formed of the
intervals (—oo,x; + €),e > 0.

The quasi-dual (X;, N,*)* of a fuzzy quasi-normed space
(X1, N,*) is formed by all continuous linear functionals
from (X;, 7y) to (R, 7(w)). In the sequel, (X;, N,*)* will
be simply denoted by X;.

Theorem 3.1 Let (X;,N,*) be a fuzzy quasi-normed
space.f € X{ iff there are a€(0,1) and M, >
0s.t.h(x;) < My||xq||, forall x; € X;.

Corollary 3.1 Let (X,,N,*) be a fuzzy quasi-normed
space. (X;, N,*)* is a convex cone.

Now, we shall equip (X;, N,=)* with a weal fuzzy quasi-
norm.

Definition 3.1 Let X, be a linear space and let g¢;: X; —
[0,00] be an extended function Vi€ l. If [gy:i €]
fulfils the conditions of star quasi-seminorms, then it is
called a family of star extended quasi-seminorms.
Theorem 3.2 Let Q ={||.|lo:@ € (0,1)} be an
increasing family of separating star extended quasi-
seminorms on real linear space X,, and let ||. ||, be given
by [lx||, = 0 Vx; € X;.The function Ng(xq,t):X; X
[0, 0] — [0,1] is given by

Nq(xllt) = {

(3.1)
Then (N,,*) is a weak fuzzy quasi-norm on X;.
(FQNZ1) is obvious.

0,t=0
sup {a € (0,1): ||x1||a <tt>0
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(FON2) If  Ny(x;,t) = Ny(=x1,t) Vt >0 then
x|l <t and ||—x4]|, <tV ae€(0,1) from (3.1).
Therefore, ||x1]lq = ||—%1l]¢ = 0V a € (0,1). SinceQ
is separating, x; = 6. Conversely, if x; =6, then it
implies that ||x, ||, = [|—x1]]o, =0Vt > 0.

By (3.1), Ng(x1,t) = Ng(—x,t) = 1.

(FQNS3) Let d > 0. From (x QN1), we have

N,(dxy,t) = sup {a € (0,1): ||dx1||a < t}

t
= sup {a € (0,1): ||x1||a < E}
= Ny (xq,t/0).
(FQN4) Let x;,y; € X; and s, t > 0 and let Ny (xy,t) =
B,Nq(y;s) =y. W.LO.G, we assume that 0<

min{B,y}.
For any 0 < e < min{B,y}, there exist a’,a" €

01)s.t.a’">B—¢€,a"”" >y —c¢, ||x1||a, < tand
||J’1||au <s.
Thus, ||x1||ﬁ_6 <tand |[y;l] _ <s. And hence,

||x1 + J’1||(B_E)*(y_€) < ||x1||ﬁ—e + ||y1||y_E <t+s.

By (3.1), Ng(xy + yp, t +s) 2 (B—€) (¥ —e).

(FQNS) Obviously, N,(6,_) = 1, and hence, N, (6,_) is

continuous. Now, take x, € X/{6} and t, > 0.

If  Ny(x1,t,) =0, then Ng(xq,t) = Ny(xq,t) =

0Vt <t,.

S0, Ng(xq,_) is left continuous at t,. Take € > 0, from

3.1), 3 a, €(0,1)s.t. ||x1||ao <t, and Ng(x,,t) —

€ < a,. S0, we have N,(x,t) > a, V t with ||x1||ao <

t <t, Hence, Ng(x,t,)— Ny(xs,t) < Ng(xy,t,) —

a, <E€.

Therefore, N, (x,,_) is left continuous at ¢,. And

11|} = sup{hx,): [Ial],_, < 1}va € 0.

(3.2)

Theorem 3.3 Let (X, N,*) be a fuzzy quasi-normed

space, h € X*, a0 € (0,1).

1 If b= 0, then ||hl|" > 0.

2. l1Al]!, = sup {hGe): [Ixl],_, < 1}

3. l1Al|" = sup{h(x)): NGy, 1) 2 1 - ab.

4. IfN(x,,_) is increasing strictly, then ||h||z =

sup{h(x;):N(xy,1) = 1 — a}
Theorem 3.4 Let (X, N,*) be a fuzzy quasi-normed
space. Then

(1) {1 ||z: a € (0,1)} is a family of separating star
extended quasi-seminorms on X#;

) {1 ||z: a € (0,1)} is increasing with respect to
a € (0,1).

Remark 3.1||f||z can be infinity even in symmetrical
situations [3].

The following theorem is obvious from theorem 3.2 and
theorem 3.4.
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Theorem 3.5 Let (X{,N,*) be a fuzzy quasi-normed
space. For each h € X7, let

. 0,t=0
Ny, (h,t) = {sup {a €[0,1]: ||h||z < t}
(3.3)
Then, (N5 ,*) is a weak fuzzy quasi-norm on X7

IV. HAHN-BANACH AND SEPARATION
THEOREMS FOR CONVEX SETS

Lemma4.1 Let X, be a linear space and g be a sublinear
functional on X;. If X, is a subspace of X, and h, is a
linear functional by q on X, then 3 a h dominated by q
on X15-t-X£0 = h,.
Theorem 4.1 Let (X, N,*) be a fuzzy quasi-normed
space and let h, be a continuous linear functional on a
subspace (X,, N/X,,*) of (X{,N,x). Then, 3§ € [0,1]
for which the following two conditions are satisfied:
(1) for alla € (0,6), there is h, € (X;, N,x)*s.t.
he # #
= hoand |Ihall, = Ihol],, where
#

l1Roll] = sup{hoCer)ix: € X, [Ixall,_, < 1};
(@  Ni(ho t) = sup{N*(hg, D): @ € (0,8)}V £ >
0.
Proof:
Put

6 = sup {a € (0,1): ||h0||z,xo < oo}
4.2)
Since h, € (X,, N/X,,*)*, we gets € (0,1).
@ For any a€(0,6), (4.1) implies that

Ikl < oo

Define a functional g, on X, as:
4a () = |lhol[] |12al],_ ¥ € X;.

[I. ||1_ais a quasi-seminorm implying that g, is a

sublinear functional on X.

Let x; € Xo. If [lxl],_ >0, then ho(

X1

IR
1R[], s0 that hy(x1) < qa ().

If ||x1||1_a =0, then||cx1||1_a = g||x1||1_a =0V¢>
0

By definition of ||k, ||, we get

# . #
1holl . > holsx1) i ko (1) < IRl /5
= ho(x1) < 0 = qq ().
Thus, h, is dominated by q, on X,.
By lemma 4.1, there is a linear functional h, on X, s.t.

e h, and
Xo
#
he(xq) < ||h0||a,xo||x1||1—a’vx1 € X;.
On the other hand, by h,(x) < ||h0||z‘xo||x1||1_a, we

know that hg (x;) < |Ih,| |§X
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whenever ||x1||1_a < 1, which means that
#
||h“||a =sup{hq(x;): x; € X, ||x1||1_a <1<
#
l1holl, .-
# #
Thus, ||ha||a = ||ho||a‘Xo.
2 For any a € (0,6) and y € [0,1), since % =

o

h,, it is obvious that
# .
||ha||y = ||h0||y,Xo’ it follows

Ny (ho,t) = sup{y € [0,1):

#
sup {y € [0,1):||ha||y <t} = N#(hy, t).

Lemma 4.2 Let A be a semi-balanced and absorbing

subset of a paratopological linear space (X, 7). py is the

minkowski functional of the set 4, i.e.

ua(xy) =inf{¢c > 0:x; € ¢A} V x; € X;.

Put = {x;: (1) <1} € = {xipp(xy) < 13

(1) palsxy) = cpa(x) V¢ >0,V x; €X,.

2 If A is convex, then p,(x+7y) < pyu(x) +

pa(y), vV x1, 1 € X1,

©) int,ACBCACCCcCLA

(@) The following are equivalent:

(i) ta: (X1,7) = (R, T(w)) is continuous at 6,

(i) int,A = B,

(iii) 0 € int A.

(5) If A is convex, then p,: (X1, 7) = (R, T(w)) is

continuous at 8 iff py is continuous at X;.

Theorem 4.2 Let(X;,N,*) be a fuzzy quasi-normed

space and A, B two disjoint convex subsets of X with A

open. Then, 3 ad € (0,1] s.t for each a € (0, §), there is

h, € X*s.t.

ha(x1) < he(y1) V x; €Ay, €B.

Proof:

Lety € A,n € Band let§ = n — 9. Since A is open and

topology ty is translation invariant, C = A— B + & is

open. It is obvious that C is convex and 8 € C.

By lemma 4.2, u. of C is sublinear, T(w)-continuous.

Since, ANB = ¢, then £ & C.uc(§) = 1. Let X, be

one-dimensional subspace generated by &. A linear

functional h,: X, = Rby h,(t§) =tVt eR.

Since h,(t&) =t < tuc(&) = pc(té) for t =0, and

ho(t&) =t <0 < pc(té) fort < 0, it follows that

ho(x1) < pic(x1),V 21 € X,

= h, is (w)-continuous.

By theorem 4.1,3 6 € (0,] s.t. @ € (0,6), there is h, €

X*st Z—: = h,,.

For each x; € A and y, € B, since h(§) =1, x —y +

& € Cand C is open,

= ho(x1) — hpe(y1) + 1 = Pha(xy —y1 +§)
Spcler =y +8 <1,

= he(x1) < he(1).

#
Iholl}, <t} =
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