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ABSTRACT: In this article, we obtain a depiction of continuous linear functionals on a fuzzy quasi-normed 

space, and indicate the firm of all continuous linear functional forms a convex cone. Finally, we establish a 

theorem of separation and Hahn-Banach for convex subsets. 
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I. INTRODUCTION 

Alegre and Romaguera [2] formulated problem using 

fuzzy quasi-norm, while [1] obtained the properties of 

the paratopological vector spaces that are quasi-

metrizable, locally bounded, quais-normable. In [4], they 

established some results in fuzzy quasi-normed spaces. 

The [3] was expanded upon by [4] by proving an 

extension theorem for continuous linear functionals on a 

fuzzy normed space. 

This paper consists of four sections. Section 1 contains 

introduction. Section 2 consists of basic definitions and 

prepositions. In section 3, we discuss continuous linear 

functionals on a “fuzzy quasi-normed space”. In section 

4, we prove Hahn-Banach and separation theorems for 

convex subsets. 

II. PRELIMINARIES 

Definition 1 [8]: A binary operation ∗: [0,1] × [0,1] →
[0,1] is a continuous t-norm if it satisfies the following 

conditions: ∀𝑎, 𝑏, 𝑐, 𝑑 ∈ [0,1], 
(1) 𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎 (commutavity); 

(2) (𝑎 ∗ 𝑏) ∗ 𝑐 = 𝑎 ∗ (𝑏 ∗ 𝑐) (associativity); 

(3) 𝑎 ∗ 𝑏 ≤ 𝑐 ∗ 𝑑 whenever 𝑎 ≤ 𝑐 and 𝑏 ≤ 𝑑 

(monotonicity); 

(4) 𝑎 ∗ 1 = 𝑎 (boundary condition); 

(5) ∗ is continuous on [0,1] × [0,1] (continuity). 

Three paradigmatic examples of continuous t-norm are 

∧,∙ and ∗𝐿 (the Lukasiewicz t-norm), which are defined 

by 

𝑎 ∧ 𝑏 = min{𝑎, 𝑏} , 𝑎 ∙ 𝑏 = 𝑎𝑏 and ∗𝐿 𝑏 = max{𝑎 +
𝑏 − 1,0} , respectively. 

Definition 2 [2]: A fuzzy quasi-norm on a real vector 

space X is a pair (𝑁,∗) such that * is a continuous t-norm 

and 𝑁 is a fuzzy set 𝑋 × [0, +∞) satisfying the following 

conditions: for every , 𝑦 ∈ 𝑋 , 

(FQN1) 𝑁(𝑥, 0) = 0 ; 
(FQN2) 𝑁(𝑥, 𝑡) = 𝑁(−𝑥, 𝑡) = 1 for all > 0 ⟺ 𝑥 = 𝜃 ; 

(FQN3)  𝑁(𝜆𝑥, 𝑡) = 𝑁(𝑥, 𝑡/𝜆) for all > 0 ; 

(FQN4) 𝑁(𝑥, 𝑡) ∗ 𝑁(𝑦, 𝑠) ≤ 𝑁(𝑥 + 𝑦, 𝑡 + 𝑠) for all 

, 𝑠 > 0 ; 

(FQN5) 𝑁(𝑥, _): [0, +∞] → [0,1] is left continuous; 

(FQN6) lim
𝑡→∞

𝑁(𝑥, 𝑡) = 1 . 

Obviously, the function 𝑁(𝑥, _) is increasing for each 

𝑥 ∈ 𝑋. 
By a fuzzy quasi-normed space, we mean a triple 
(𝑋, 𝑁,∗) such that 𝑋 is a real vector space and (𝑁,∗) is a 

fuzzy quasi-norm on 𝑋. 

If condition (FQN6) is omitted, we say that (𝑁,∗) is a 

weak fuzzy quasi-norm on 𝑋. 

Each fuzzy quasi-norm (𝑁,∗) on 𝑋 induces a 𝑇𝑜 topology 

𝜏𝑛 on 𝑋 which has a basen given by the family of open 

balls 

ℬ(𝑥) = {𝐵𝑛(𝑥, 𝑟, 𝑡): 𝑟 ∈ (0,1), 𝑡 > 0} 

at 𝑥 ∈ 𝑋,  

where, 

𝐵𝑛(𝑥, 𝑟, 𝑡) = {𝑦 ∈ 𝑋: 𝑁(𝑦 − 𝑥, 𝑡) > 1 − 𝑟}. 
We denote 𝑐𝑙𝑁𝐴 the closure of A and by 𝑖𝑛𝑡𝑁𝐴 the 

interior of A in the topological space (𝑋, 𝜏𝑛). 
A subset 𝐴 of a real vector space 𝑋 is 

(1) Semi-balanced [7] provided that for each 𝑥 ∈ 𝐴,
𝑟𝑥 ∈ 𝐴 whenever 0 ≤ 𝑟 ≤ 1; 

(2) absorbing provided that for each 𝑥 ∈ 𝑋, there is 

𝜆𝑜 > 0 such that 𝜆𝑜𝑥 ∈ 𝐴. 
Remark 2.1. Obviously, we have 

(1) if 𝐴 is semibalanced, then 𝐴 is absorbing if and 

only if for each 𝑥 ∈ 𝑋, there is 𝜆𝑜 > 0 such that 𝜆𝑥 ∈ 𝐴 

whenever 0 < 𝜆 < 𝜆𝑜 ; 

(2) if 𝜃 ∈ 𝐴 and 𝐴 is convex, then 𝐴 is 

semibalanced. 

Proposition 2.1 [2]. Let(𝑋, 𝑁,∗) be a fuzzy quasi-

normed space and let ℬ(𝜃) the family of open balls with 

center in the origin 𝜃. Then: 

(1) 𝐵𝑁(𝜃, 𝑟, 𝑡) is absorbing for all 𝑡 > 0 and 𝑟 ∈
(0,1). 
(2) 𝐵𝑁(𝜃, 𝑟, 𝑡) is semi-balanced for all 𝑡 > 0 and 

𝑟 ∈ (0,1). 
(3) 𝜆𝐵𝑁(𝜃, 𝑟, 𝑡) = 𝐵𝑁(𝜃, 𝑟, 𝜆𝑡) for every 𝜆 >
0, 𝑡 > 0 and 𝑟 ∈ (0,1). 
(4) If𝑈 ∈ ℬ(𝜃), there is 𝑉 ∈ ℬ(𝜃), such that 𝑉 +
𝑉 ⊆ 𝑈. 

(5) If𝑈, 𝑉 ∈ ℬ(𝜃), there is 𝑊 ∈ ℬ(𝜃), such that 

𝑊 ⊆ 𝑈 ∩ 𝑉. 
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(6) ∀𝑥 ∈ 𝑋, 𝑥 + 𝐵𝑁(𝜃, 𝑟, 𝑡) = 𝐵𝑁(𝑥, 𝑟, 𝑡). 
Remark 2.2. If the continuous t-norm * is chosen as “∧”, 

then each element ℬ(𝜃) is convex. 

Remark 2.3. By Proposition 2.1, the mappings: (𝑥, 𝑦) →
𝑥 + 𝑦 and (𝜆, 𝑥) → 𝜆𝑥 are continuous on 𝑋 × 𝑋 and 

[0, ∞) × 𝑋 , respectively, and the topology 𝜏𝑛 is 

translation invariant. 

Proposition 2.2 ([2]). If (𝑋, 𝑁,∗) is a fuzzy quasi-

normed space, then (𝑋, 𝜏𝑛,∗) is a quasi-metrizable 

paratopological vector space. 

Proposition 2.3. Let 𝑃 = {𝑝𝛼: 𝑝𝛼  is a function from 𝑋 to 

[0, ∞), 𝛼 ∈ (0,1)} be a family of star quasi-seminorms. 

For each 𝑥 ∈ 𝑋, let 

𝑈𝑝(𝑥) = {𝑈(𝑥: 𝛼1, 𝛼2, … , 𝛼𝑛; 𝜀): 𝜀 > 0; 𝛼1, 𝛼2, … , 𝛼𝑛

∈ (0,1), 𝑛 ∈ ℕ}, 
where 

𝑈(𝑥: 𝛼1, 𝛼2, … , 𝛼𝑛; 𝜀)

= {𝑦 ∈ 𝑋: 𝑝𝛼𝑖
(𝑦 − 𝑥) < 𝜀, 𝛼𝑖

∈ (0,1), 𝑖 = 1,2, … , 𝑛} 

= ⋂ {𝑦 ∈ 𝑋:
𝑛

𝑖=1
𝑝𝛼𝑖

(𝑦 − 𝑥) < 𝜀, 𝛼𝑖 ∈ (0,1)} 

= {𝑦 ∈ 𝑋: 𝑝max {𝛼𝑖:1≤𝑖≤𝑛}(𝑦 − 𝑥) < 𝜀 

Then, 𝑈𝑝(𝑥) is a basis of neighbourhoods of 𝑥. 

III. CONTINUOUS LINEAR FUNCTIONALS ON 

A “FUZZY QUASI-NORMED SPACE 

Consider the quasi-norm 𝑤(𝑥1) = max {𝑥1, 0} on the 

real numbers ℝ. The topology 𝜏(𝑤) generated by 𝑤 is 

called the upper topology of ℝ. A basis of open 𝜏(𝑤)- 

neighbourhoods of a point 𝑥1 ∈ ℝ is formed of the 

intervals (−∞, 𝑥1 + 𝜀), 𝜀 > 0. 

The quasi-dual (𝑋1, 𝑁,∗)# of a fuzzy quasi-normed space 

(𝑋1, 𝑁,∗) is formed by all continuous linear functionals 

from (𝑋1, 𝜏𝑁) to (ℝ, 𝜏(𝑤)). In the sequel, (𝑋1, 𝑁,∗)# will 

be simply denoted by 𝑋1
#. 

Theorem 3.1 Let (𝑋1, 𝑁,∗) be a fuzzy quasi-normed 

space.𝑓 ∈ 𝑋1
# iff there are 𝛼 ∈ (0,1) and 𝑀1 >

0 𝑠. 𝑡. ℎ(𝑥1) ≤ 𝑀1||𝑥1||𝛼 for all  𝑥1 ∈ 𝑋1. 

Corollary 3.1 Let (𝑋1, 𝑁,∗) be a fuzzy quasi-normed 

space. (𝑋1, 𝑁,∗)# is a convex cone. 

Now, we shall equip  (𝑋1, 𝑁,∗)# with a weal fuzzy quasi-

norm. 

Definition 3.1 Let 𝑋1 be a linear space and let 𝑞1: 𝑋1 →
[0, ∞] be an extended function ∀ 𝑖 ∈ 𝐼. If [𝑞1: 𝑖 ∈ 𝐼] 
fulfils the conditions of star quasi-seminorms, then it is 

called a family of star extended quasi-seminorms. 

Theorem 3.2 Let 𝑄 = {||. ||𝛼: 𝛼 ∈ (0,1)} be an 

increasing family of separating star extended quasi-

seminorms on real linear space 𝑋1, and let ||. ||𝑜 be given 

by ||𝑥||𝑜 = 0 ∀𝑥1 ∈ 𝑋1.The function 𝑁𝑞(𝑥1, 𝑡): 𝑋1 ×

[0, ∞] → [0,1] is given by 

𝑁𝑞(𝑥1, 𝑡) = {
0, 𝑡 = 0

sup {𝛼 ∈ (0,1): ||𝑥1||
𝛼

< 𝑡, 𝑡 > 0}  

(3.1) 

Then (𝑁𝑞 ,∗) is a weak fuzzy quasi-norm on 𝑋1. 

(FQN1) is obvious. 

(FQN2) If 𝑁𝑞(𝑥1, 𝑡) = 𝑁𝑞(−𝑥1, 𝑡) ∀ 𝑡 > 0 then 

||𝑥1||𝛼 < 𝑡 and ||−𝑥1||𝛼 < 𝑡 ∀ 𝛼 ∈ (0,1) from (3.1). 

Therefore,  ||𝑥1||𝛼 = ||−𝑥1||𝛼 = 0 ∀ 𝛼 ∈ (0,1). Since𝑄 

is separating, 𝑥1 = 𝜃. Conversely, if 𝑥1 = 𝜃, then it 

implies that ||𝑥1||𝛼 = ||−𝑥1||𝛼 = 0 ∀ 𝑡 > 0. 
By (3.1), 𝑁𝑞(𝑥1, 𝑡) = 𝑁𝑞(−𝑥1, 𝑡) = 1. 

(FQN3) Let 𝑑 > 0. From (∗ 𝑄𝑁1), we have 

𝑁𝑞(𝑑𝑥1, 𝑡) = sup {𝛼 ∈ (0,1): ||𝑑𝑥1||
𝛼

< 𝑡} 

= sup {𝛼 ∈ (0,1): ||𝑥1||
𝛼

<
𝑡

𝑐
} 

= 𝑁𝑞(𝑥1, 𝑡/𝑐). 

(FQN4) Let  𝑥1, 𝑦1 ∈ 𝑋1 and 𝑠, 𝑡 > 0 and let 𝑁𝑞(𝑥1, 𝑡) =

𝛽, 𝑁𝑞(𝑦1𝑠) = 𝛾. W.L.O.G., we assume that 0 <

min{𝛽, 𝛾}. 
For any 0 < 𝜖 < min{𝛽, 𝛾}, there exist 𝛼′, 𝛼′′ ∈
(0,1) 𝑠. 𝑡. 𝛼′ > 𝛽 − 𝜖, 𝛼′′ > 𝛾 − 𝜖, ||𝑥1||

𝛼′ < 𝑡 and 

||𝑦1||
𝛼′′ < 𝑠. 

Thus, ||𝑥1||
𝛽−𝜖

< 𝑡 and ||𝑦1||
𝛾−𝜖

< 𝑠. And hence, 

||𝑥1 + 𝑦1||
(𝛽−𝜖)∗(𝛾−𝜖)

≤ ||𝑥1||
𝛽−𝜖

+ ||𝑦1||
𝛾−𝜖

< 𝑡 + 𝑠. 

By (3.1), 𝑁𝑞(𝑥1 + 𝑦1, 𝑡 + 𝑠) ≥ (𝛽 − 𝜖) ∗ (𝛾 − 𝜖). 

(FQN5) Obviously, 𝑁𝑞(𝜃, _) = 1, and hence, 𝑁𝑞(𝜃, _) is 

continuous. Now, take 𝑥𝑜 ∈ 𝑋/{𝜃} and 𝑡𝑜 > 0. 
If 𝑁𝑞(𝑥1, 𝑡𝑜) = 0, then 𝑁𝑞(𝑥1, 𝑡) = 𝑁𝑞(𝑥1, 𝑡0) =

0 ∀ 𝑡 < 𝑡𝑜. 
So, 𝑁𝑞(𝑥1, _) is left continuous at 𝑡𝑜. Take 𝜖 > 0, from 

(3.1), ∃ 𝛼𝑜 ∈ (0,1) 𝑠. 𝑡. ||𝑥1||
𝛼𝑜

< 𝑡𝑜 and 𝑁𝑞(𝑥𝑜, 𝑡) −

𝜖 < 𝛼𝑜. So, we have 𝑁𝑞(𝑥, 𝑡) ≥ 𝛼𝑜 ∀ 𝑡 with ||𝑥1||
𝛼𝑜

<

𝑡 < 𝑡𝑜. Hence, 𝑁𝑞(𝑥, 𝑡𝑜) − 𝑁𝑞(𝑥1, 𝑡) ≤ 𝑁𝑞(𝑥1, 𝑡𝑜) −

𝛼𝑜 < 𝜖. 
Therefore, 𝑁𝑞(𝑥1, _) is left continuous at 𝑡𝑜. And  

||ℎ||
𝛼

#
= sup {ℎ(𝑥1): ||𝑥1||

1−𝛼
≤ 1} ∀ 𝛼 ∈ (0,1). 

(3.2) 

Theorem 3.3 Let (𝑋1, 𝑁,∗) be a fuzzy quasi-normed 

space, ℎ ∈ 𝑋#, 𝛼 ∈ (0,1). 

1. If ℎ ≠ 0, then ||ℎ||
𝛼

#
> 0. 

2. ||ℎ||
𝛼

#
= sup {ℎ(𝑥1): ||𝑥1||

1−𝛼
< 1}. 

3. ||ℎ||
𝛼

#
= sup{ℎ(𝑥1): 𝑁(𝑥1, 1) ≥ 1 − 𝛼}. 

4. If𝑁(𝑥1, _) is increasing strictly, then ||ℎ||
𝛼

#
=

sup{ℎ(𝑥1): 𝑁(𝑥1, 1) ≥ 1 − 𝛼} 

Theorem 3.4 Let (𝑋1, 𝑁,∗) be a fuzzy quasi-normed 

space. Then  

(1) {||. ||
𝛼

#
: 𝛼 ∈ (0,1)} is a family of separating star 

extended quasi-seminorms on 𝑋1
#; 

(2) {||. ||
𝛼

#
: 𝛼 ∈ (0,1)} is increasing with respect to 

𝛼 ∈ (0,1). 

Remark 3.1||𝑓||
𝛼

#
 can be infinity even in symmetrical 

situations [3]. 

The following theorem is obvious from theorem 3.2 and 

theorem 3.4. 
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Theorem 3.5 Let (𝑋1, 𝑁,∗) be a fuzzy quasi-normed 

space. For each ℎ ∈ 𝑋1
#, let 

𝑁𝑥1
# (ℎ, 𝑡) = {

0, 𝑡 = 0

sup {𝛼 ∈ [0,1]: ||ℎ||
𝛼

#
< 𝑡

}  

    (3.3) 

Then, (𝑁𝑥1
# ,∗) is a weak fuzzy quasi-norm on 𝑋1

#. 

IV. HAHN-BANACH AND SEPARATION 

THEOREMS FOR CONVEX SETS 

Lemma 4.1 Let 𝑋1 be a linear space and 𝑞 be a sublinear 

functional on 𝑋1. If 𝑋𝑜 is a subspace of 𝑋1 and ℎ𝑜 is a 

linear functional by 𝑞 on 𝑋𝑜, then ∃ a ℎ dominated by 𝑞 

on 𝑋1s.t.
ℎ

𝑋𝑜
= ℎ𝑜. 

Theorem 4.1 Let (𝑋1, 𝑁,∗) be a fuzzy quasi-normed 

space and let ℎ𝑜 be a continuous linear functional on a 

subspace (𝑋𝑜, 𝑁/𝑋𝑜 ,∗) of (𝑋1, 𝑁,∗). Then, ∃ 𝛿 ∈ [0,1] 
for which the following two conditions are satisfied: 

(1) for all𝛼 ∈ (0, 𝛿), there is ℎ𝛼 ∈ (𝑋1, 𝑁,∗)#s.t. 
ℎ𝛼

𝑋𝑜
= ℎ𝑜 and ||ℎ𝛼||

𝛼

#
= ||ℎ𝑜||

𝛼,𝑋𝑜

#
,where 

||ℎ𝑜||
𝛼,𝑋𝑜

#
= sup {ℎ𝑜(𝑥1): 𝑥1 ∈ 𝑋𝑜, ||𝑥1||

1−𝛼
≤ 1} ; 

(2) 𝑁𝑋𝑜
# (ℎ𝑜 , 𝑡) = sup{𝑁#(ℎ𝛼 , 𝑡): 𝛼 ∈ (0, 𝛿)} ∀ 𝑡 >

0. 
Proof: 

Put  

𝛿 = sup {𝛼 ∈ (0,1): ||ℎ𝑜||
𝛼,𝑋𝑜

#
< ∞}  

    (4.1) 

Since ℎ𝑜 ∈ (𝑋𝑜, 𝑁/𝑋𝑜,∗)#, we get 𝛿 ∈ (0,1). 

(1) For any 𝛼 ∈ (0, 𝛿), (4.1) implies that 

||ℎ𝑜||
𝛼,𝑋𝑜

#
< ∞. 

Define a functional 𝑞𝛼 on 𝑋1 as: 

𝑞𝛼(𝑥) = ||ℎ𝑜||
𝛼,𝑋𝑜

#
||𝑥1||

1−𝛼
, ∀𝑥1 ∈ 𝑋1. 

||. ||
1−𝛼

is a quasi-seminorm implying that 𝑞𝛼 is a 

sublinear functional on 𝑋. 

Let 𝑥1 ∈ 𝑋0. If ||𝑥1||
1−𝛼

> 0, then ℎ𝑜(
𝑥1

||𝑥1||
1−𝛼

) ≤

||ℎ𝑜||
𝛼,𝑋𝑜

#
 so that ℎ𝑜(𝑥1) ≤ 𝑞𝛼(𝑥).  

If ||𝑥1||
1−𝛼

= 0, then||𝜍𝑥1||
1−𝛼

= 𝜍||𝑥1||
1−𝛼

= 0 ∀ 𝜍 >

0. 

By definition of ||ℎ𝑜||
𝛼,𝑋𝑜

#
, we get 

||ℎ𝑜||
𝛼,𝑋𝑜

#
> ℎ𝑜(𝜍𝑥1) i.e. ℎ𝑜(𝑥1) ≤ ||ℎ𝑜||

𝛼,𝑋𝑜

#
/𝜍 

⇒ ℎ𝑜(𝑥1) ≤ 0 = 𝑞𝛼(𝑥). 
Thus, ℎ𝑜 is dominated by 𝑞𝛼 on 𝑋𝑜. 
By lemma 4.1, there is a linear functional ℎ𝛼 on 𝑋, s.t. 
ℎ𝛼

𝑋𝑜
= ℎ𝑜 and 

ℎ𝛼(𝑥1) ≤ ||ℎ𝑜||
𝛼,𝑋𝑜

#
||𝑥1||

1−𝛼
, ∀𝑥1 ∈ 𝑋1. 

On the other hand, by ℎ𝛼(𝑥) ≤ ||ℎ𝑜||
𝛼,𝑋𝑜

#
||𝑥1||

1−𝛼
, we 

know that ℎ𝛼(𝑥1) ≤ ||ℎ𝑜||
𝛼,𝑋𝑜

#
 

whenever ||𝑥1||
1−𝛼

≤ 1, which means that 

||ℎ𝛼||
𝛼

#
=sup{ℎ𝛼(𝑥1): 𝑥1 ∈ 𝑋𝑜, ||𝑥1||

1−𝛼
≤ 1} ≤

||ℎ𝑜||
𝛼,𝑋𝑜

#
. 

Thus, ||ℎ𝛼||
𝛼

#
= ||ℎ𝑜||

𝛼,𝑋𝑜

#
. 

(2) For any 𝛼 ∈ (0, 𝛿) and 𝛾 ∈ [0,1), since  
ℎ𝛼

𝑋𝑜
=

ℎ𝑜, it is obvious that  

||ℎ𝛼||
𝛾

#
= ||ℎ𝑜||

𝛾,𝑋𝑜

#
, it follows 

𝑁𝑋𝑜
# (ℎ𝑜 , 𝑡) = sup {𝛾 ∈ [0,1): ||ℎ𝑜||

𝛾,𝑋𝑜

#
< 𝑡}  ≥

sup {𝛾 ∈ [0,1):||ℎ𝛼||
𝛾

#
< 𝑡} = 𝑁#(ℎ𝛼 , 𝑡). 

Lemma 4.2 Let 𝐴 be a semi-balanced and absorbing 

subset of a paratopological linear space (𝑋1, 𝜏). 𝜇𝐴 is the 

minkowski functional of the set 𝐴, i.e.  

𝜇𝐴(𝑥1) = inf{𝜍 > 0: 𝑥1 ∈ 𝜍𝐴} ∀ 𝑥1 ∈ 𝑋1. 
Put = {𝑥1: 𝜇𝐴(𝑥1) < 1} ; 𝐶 = {𝑥1: 𝜇𝐵(𝑥1) ≤ 1} 

(1) 𝜇𝐴(𝜍𝑥1) = 𝜍𝜇𝐴(𝑥1) ∀ 𝜍 > 0, ∀ 𝑥1 ∈ 𝑋1.  
(2) If 𝐴 is convex, then 𝜇𝐴(𝑥 + 𝑦) ≤ 𝜇𝐴(𝑥) +
𝜇𝐴(𝑦), ∀ 𝑥1, 𝑦1 ∈ 𝑋1. 

(3) 𝑖𝑛𝑡𝜏𝐴 ⊆ 𝐵 ⊆ 𝐴 ⊆ 𝐶 ⊆ 𝐶𝑙𝜏𝐴 

(4) The following are equivalent: 

(i) 𝜇𝐴: (𝑋1, 𝜏) → (𝑅, 𝜏(𝑤)) is continuous at 𝜃, 

(ii) 𝑖𝑛𝑡𝜏𝐴 = 𝐵, 
(iii) 𝜃 ∈ 𝑖𝑛𝑡𝜏𝐴. 

(5) If 𝐴 is convex, then 𝜇𝐴: (𝑋1, 𝜏) → (𝑅, 𝜏(𝑤)) is 

continuous at 𝜃 iff 𝜇𝐴 is continuous at 𝑋1. 
Theorem 4.2 Let(𝑋1, 𝑁,∗) be a fuzzy quasi-normed 

space and 𝐴, 𝐵 two disjoint convex subsets of 𝑋 with 𝐴 

open. Then, ∃ a𝛿 ∈ (0,1] s.t for each 𝛼 ∈ (0, 𝛿), there is 

ℎ𝛼 ∈ 𝑋#s.t. 

ℎ𝛼(𝑥1) < ℎ𝛼(𝑦1) ∀ 𝑥1 ∈ 𝐴, 𝑦1 ∈ 𝐵. 
Proof: 

Let 𝜗 ∈ 𝐴, 𝜂 ∈ 𝐵 and let 𝜉 = 𝜂 − 𝜗. Since 𝐴 is open and 

topology 𝜏𝑁 is translation invariant, 𝐶 = 𝐴 − 𝐵 + 𝜉 is 

open. It is obvious that 𝐶 is convex and 𝜃 ∈ 𝐶. 
By lemma 4.2, 𝜇𝐶 of 𝐶 is sublinear, 𝜏(𝑤)-continuous. 

Since, 𝐴 ∩ 𝐵 = 𝜙, then 𝜉 ∉ 𝐶. 𝜇𝐶(𝜉) ≥ 1. Let 𝑋𝑜 be 

one-dimensional subspace generated by 𝜉. 𝐴 linear 

functional ℎ𝑜: 𝑋𝑜 → 𝑅 by ℎ𝑜(𝑡𝜉) = 𝑡 ∀ 𝑡 ∈ ℝ. 

Since ℎ𝑜(𝑡𝜉) = 𝑡 ≤ 𝑡𝜇𝐶(𝜉) = 𝜇𝐶(𝑡𝜉) for 𝑡 ≥ 0, and 

ℎ𝑜(𝑡𝜉) = 𝑡 < 0 ≤ 𝜇𝐶(𝑡𝜉) for 𝑡 < 0, it follows that 

ℎ𝑜(𝑥1) ≤ 𝜇𝐶(𝑥1), ∀ 𝑥1 ∈ 𝑋𝑜. 
⟹  ℎ𝑜 is 𝜏(𝑤)-continuous. 

By theorem 4.1, ∃ 𝛿 ∈ (0, ] s.t. 𝛼 ∈ (0, 𝛿), there is ℎ𝛼 ∈

𝑋# s.t  
ℎ𝛼

𝑋𝑜
= ℎ𝑜. 

For each 𝑥1 ∈ 𝐴 and 𝑦1 ∈ 𝐵, since ℎ(𝜉) = 1, 𝑥 − 𝑦 +
𝜉 ∈ 𝐶 and 𝐶 is open, 

⟹ ℎ𝜙𝛼(𝑥1) − ℎ𝜙𝛼(𝑦1) + 1 = 𝜙ℎ𝛼(𝑥1 − 𝑦1 + 𝜉)
≤ 𝜇𝐶(𝑥1 − 𝑦1 + 𝜉) < 1, 

⟹ ℎ𝛼(𝑥1) < ℎ𝛼(𝑦1). 
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